X-Rays

From Star Trek : Freedom's Wiki
Revision as of 16:29, 4 March 2010 by Nicesociety (talk | contribs) (Created page with 'thumb|250px|right|An X-ray Burst ''X-radiation'' (composed of X-Rays) is a form of electromagnetic radiation. X-rays have a wavelength in the ra…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
An X-ray Burst

X-radiation (composed of X-Rays) is a form of electromagnetic radiation. X-rays have a wavelength in the range of 10 to 0.01 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz (3 × 1016 Hz to 3 × 1019 Hz) and energies in the range 120 eV to 120 keV. They are shorter in wavelength than UV rays. In many languages, X-radiation is called Roentgen radiation, after Wilhelm Conrad Roentgen, who is generally credited as their discoverer, and who had named them X-rays to signify an unknown type of radiation.

X-rays from about 0.12 to 12 keV (10 to 0.10 nm wavelength), are classified as "soft" X-rays, and from about 12 to 120 keV (0.10 to 0.010 nm wavelength) as "hard" X-rays, due to their penetrating abilities.

Hard X-rays can penetrate solid objects, and their largest use is to take images of the inside of objects in diagnostic radiography and crystallography. As a result, the term X-ray is metonymically used to refer to a radiographic image produced using this method, in addition to the method itself. By contrast, soft X-rays can hardly be said to penetrate matter at all; for instance, the attenuation length of 600 eV (~ 2 nm) x-rays in water is less than 1 micrometer[2] X-rays are a form of ionizing radiation, and exposure to them can be a health hazard.

The distinction between X-rays and Gamma Rays has changed in recent decades. Originally, the electromagnetic radiation emitted by X-ray tubes had a longer wavelength than the radiation emitted by radioactive nuclei (gamma rays). So older literature distinguished between X- and gamma radiation on the basis of wavelength, with radiation shorter than some arbitrary wavelength, such as 10−11 m, defined as gamma rays. However, as shorter wavelength continuous spectrum "X-ray" sources such as linear accelerators and longer wavelength "gamma ray" emitters were discovered, the wavelength bands largely overlapped. The two types of radiation are now usually distinguished by their origin: X-rays are emitted by electrons outside the nucleus, while gamma rays are emitted by the nucleus.